搜索

等价向量组的基本判定是什么呢?

发布网友 发布时间:2024-10-23 03:11

我来回答

1个回答

热心网友 时间:2024-10-24 12:49

向量组等价的基本判定是:两个向量组可以互相线性表示。

需要重点强调的是:等价的向量组秩相等,但是秩相等的向量组不一定等价。

向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是

R(A)=R(B)=R(A,B),

其中A和B是向量组A和B所构成的矩阵

扩展资料:

性质:

1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。

2、任一向量组和它的极大无关组等价。

3、向量组的任意两个极大无关组等价。

4、两个等价的线性无关的向量组所含向量的个数相同。

5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。

6、如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。

设有两个向量组

(Ⅰ):α1,α2,……,αm;

(Ⅱ):β1,β2,……,βm;

如果(Ⅰ)中每个向量都可以由向量组(Ⅱ)线性表示,则称(Ⅰ)可由(Ⅱ)线性表示;如果(Ⅰ)与(Ⅱ)可以相互线性表示,则称(Ⅰ)与(Ⅱ)等价,记为(Ⅰ)≌(Ⅱ)。

例如:,若β1=α1+α2,β2=α1-2α2,β3=α1,则向量组(Ⅰ)={α1,α2}与向量组(Ⅱ)={β1,β2,β3}等价。事实上,给定的条件已表明(Ⅱ)可由(Ⅰ)线性表示,又容易得到α1=(2/3)β1+(1/3)β2+0β3,α2=(1/3)β1-(1/3)β2+0β3,这表明(Ⅰ)也可以由(Ⅱ)线性表示,由定义即知(Ⅰ)与(Ⅱ)等价。

参考资料:百度百科——等价向量组

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top