搜索

证明题一题,f(x)在[1,2]二阶可导,f(2)=0,又g(x)=(x-1)^2•f(x...

发布网友 发布时间:2024-10-24 13:26

我来回答

1个回答

热心网友 时间:2024-10-29 09:00

证明:由于f(x)在[1,2]上具有二阶导数,显然F(x)在[1,2]上也具有二阶导数
F(1)=0,F(2)=f(2)=0,因此由罗尔定理,存在ξ∈(1,2),使F'(ξ)=0
又F'(x)=f(x)+(x-1)f '(x),则F'(1)=f(1)+0=0
即:F'(1)=F'(ξ)=0,由于F'(x)在[1,2]可导,再用罗尔定理
存在s∈(1,ξ),使得F''(s)=0
如果满意记得采纳哦!
你的好评是我前进的动力。
(*^__^*) 嘻嘻……
我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!!!
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top