搜索

线性代数题一道

发布网友 发布时间:2024-10-24 04:12

我来回答

1个回答

热心网友 时间:2024-11-10 06:10

首先,已知代数余子式Akl不等于0,所以R(A)=n-1;
那么,解向量组的秩为: n-R(A)=1 。即基础解系只有 1 个向量;
计算AX,X=(Ak1,Ak2,...,Akn)^T,根据行列式性质,i(i!=k)行元素与X(第k行对应的代数余子式) 乘积为0,而第k行元素与X乘积为|A|也为0,所有有AX=0;
即(Ak1,Ak2,...,Akn)^T是AX=0的一个解,又因为解向量组秩为1,所以(Ak1,Ak2,...,Akn)^T就是AX=0的一个基础解系。
通解形式为:x= k*(Ak1,Ak2,...,Akn)^T
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top